Senin, 15 Juli 2019

Aplikasi Turunan

  • Menentukan gradien garis singgung suatu kurva
Gradien garis singgung (m) pada suatu kurva y = f(x) dirumuskan sebagai:
m = y' = f'(x)
Persamaan garis singgung pada suatu kurva y = f(x) di titik singgung (x_1, y_1)dirumuskan sebagai:

  •  Menentukan interval fungsi naik dan fungsi turun
Syarat interval fungsi naik \rightarrow f'(x) > 0
Syarat interval fungsi turun \rightarrow f'(x) < 0

y - y_1 = m(x - x_1) \rightarrow m = f'(x_1)

  • Menentukan nilai stasioner suatu fungsi dan jenisnya
Jika fungsi y = f(x) kontinu dan diferensiabel di x = a dan f'(x) = 0, maka fungsi memiliki nilai statisioner di x = a. Jenis nilai stasioner dari fungsi y = f(x) dapat berupa nilai balik minimum, nilai balik maksimum, atau nilai belok. Jenis nilai stasioner ini bisa ditentukan dengan menggunakan turunan kedua dari fungsi tersebut.
  • Nilai maksimum \rightarrow f'(x) = 0 dan \rightarrow f"(x) < 0
Jika f'(x_1) = 0 dan f'(x_1) < 0, maka f'(x_1) adalah nilai balik maksimum dari fungsi y = f(x) dan titik (x_1 f(x)) adalah titik balik maksimum dari kurva y = f(x).
  • Nilai minimum \rightarrow f'(x) = 0 dan f"(x) > 0
Jika f'(x_1) = 0 dan f'(x_1) > 0 , maka f(x_1) adalah nilai balik minimum dari fungsi  y = f(x) dan titik (x_1f(x)) adalah titik balik minimum dari kurva y = f(x).
  • Nilai belok \rightarrow f'(x) = 0 dan f"(x) = 0
Jika f'(x_1) = 0 dan f''(x_1 = 0), maka f(x_1) adalah nilai belok dari fungsi y = f(x) dan titik (x_1f(x)) adalah titik belok dari kurva y = f(x).

  • Menyelesaikan soal limit berbentuk tak tentu \frac{0}{0} atau  \frac{\infty}{\infty}
Jika \lim \limits_{x\to a}\frac{f(x)}{g(x)} merupakan limit berbentuk tak tentu  \frac{0}{0} atau \frac{\infty}{\infty}, maka penyelesaiannya dapat menggunakan turunan, yaitu f(x) dan g(x) masing-masing diturunkan.
\lim\limits_{x\to a}\frac{f(x)}{g(x)} =\lim\limits_{x\to a}\frac{f'(x)}{g'(x)} = \frac{f'(a)}{g'(a)}
Jika dengan turunan pertama sudah dihasilkan bentuk tertentu, maka bentuk tertentu itu adalah penyelesaiannya. Tetapi jika dengan turunan pertama masih dihasilkan bentuk tak tentu, maka masing-masing f(x) dan f(x) diturunkan lagi sampai diperoleh hasil berbentuk tertentu. Cara penyelesaian seperti ini disebut Dalil L’hopital.

  • Menentukan rumus kecepatan dan percepatan
Jika rumus atau persamaan posisi gerak suatu benda sebagai fungsi waktu diketahui yaitu s = f(t), maka rumus kecepatan dan kecepatannya dapat ditentukan yaitu:
  • Rumus kecepatan \rightarrow v = s' = f'(t)
  • Rumus percepatan \rightarrow a = s' = f"(t)


Tidak ada komentar:

Posting Komentar