Rabu, 24 Juli 2019

INTEGRAL DENGAN PECAHAN PARSIAL

Teknik pengintegralan pecahan parsial adalah metode yang digunakan untuk menyelesaikan soal integral yang biasanya berbentuk pecahan dan tidak bisa diselesaikan dengan metode substitusi. Langkah-langkahnya relatif mudah yaitu dengan memisahkan pecahan penyebutnya kemudian pembilangnya dimisalkan.  

Pengintegralan parsial ini menuntut kita pada penguasaan aljabar karena secara garis besar langkah-langkahnya adalah teknik pemisahan penyebut yang di jumpai pada pelajaran aljabar. Ada beberapa kasus yang di jumpai pada pengintegralan pecahan parsial yang bisa di baca pada postingan sebelumnya.

CONTOH SOAL

1.Tentukan hasil pegintegralan pada soal berikut :






Pembahasan :


Bisa kita lihat pangkat pada pembilangnya lebih besar daripada pangkat penyebutnya. sehingga kita lakukan pembagian suku banyak terlebih dahulu:



Sehingga :

Samakan koefisiennya :

Dengan metode eliminasi dan substitusi diperoleh : A=-1 dan B=3
Maka :

Sehingga pengintegralan secara kesuluruhannya adalah :


Integral parsial aljabar

Rumus Dasar Integral Parsial
∫ u dv = uv − ∫v du
Untuk lambang-lambangnya jika berbeda, silakan disesuaikan dengan literature atau buku yang adik-adik gunakan atau catatan yang diberikan Bapak Ibu Guru di sekolah masing-masing, pada prinsipnya sama saja.
contoh soal
Soal No. 1
Hasil dari 16 ∫ (x + 3) cos (2x − π)dx =.....
A. 8(2x + 6) sin (2x − π) + 4 cos (2x − π) + C
B. 8(2x + 6) sin (2x − π) − 4 cos (2x − π) + C
C. 8(x + 3) sin (2x − π) + 4 cos (2x − π) + C
D. 8(x + 3) sin (2x − π) − 4 cos (2x − π) + C
E. 8(x + 3) sin (2x − π) + 4 sin (2x − π) + C

Pembahasan
Beberapa cara biasa digunakan untuk menyelesaikan soal integral parsial, dua diantaranya akan ditunjukkan di sini.

Cara Pertama
∫ (x + 3) cos (2x − π)dx =.....
  |____|  |__________|
      u               dv
Langkah pertama, tentukan dulu mana u mana dv
Misalkan (x + 3) adalah u, dan sisanya, cos (2x − π)dx sebagai dv,
u = (x + 3)                 ...(Persamaan 1)
dv = cos (2x − π)dx     ...(Persamaan 2)

Langkah pertama selesai, kita tengok lagi rumus dasar integral parsial:

∫ u dv = uv − ∫v du

Terlihat di situ kita perlu u, perlu v dan perlu du. u nya sudah ada, tinggal mencari du dan v nya.

Dari persamaan 1, untuk menentukan du, caranya turunkan u nya,
u = (x + 3)
du/dx = 1
du = dx

Dari persamaan 2, untuk menentukan v,
dv = cos (2x − π)dx
atau
dv/dx = cos (2x − π)

dv/dx artinya turunan dari v adalah cos (2x − π), untuk mendapatkan v, berarti kita harus integralkan cos (2x − π) jika lupa, tengok lagi cara integral fungsi trigonometri,

v = ∫ cos (2x − π) dx = 1/2 sin (2x − π) + C

Kita rangkum lagi :
u = (x + 3)
v = 1/2 sin (2x − π)
du = dx

Saatnya kembali ke rumus dasar, masukkan nilai-nilai yang sudah dicari tadi:
16 ∫ (x + 3) cos (2x − π)dx
Simpan dulu 16 nya, terakhir nanti hasilnya baru di kali 16
= uv − ∫v du
= (x + 3) 1/2 sin (2x − π) − ∫ 1/2 sin (2x − π) du
1/2 (x + 3) sin (2x − π) − ∫ 1/2 sin (2x − π) dx
1/2 (x + 3) sin (2x − π) − 1/2 {− 1/2 cos (2x − π) }
1/2 (x + 3) sin (2x − π) + 1/4 cos (2x − π)

kalikan 16, tambahkan + C nya

= 16 { 1/2 (x + 3) sin (2x − π) + 1/4 cos (2x − π) } + C
= 8 (x + 3) sin (2x − π) + 4 cos (2x − π)  + C

Integral Parsial

Pada pembahasan ini kita akan berlatih menemukan antiturunan dengan menggunakan integral parsial. Selain itu, di bagian akhir pembahasan ini, kita juga akan menggunakan metode tabulasi dalam melakukan proses integral parsial tersebut. Teknik integral parsial dapat diterapkan dalam berbagai macam fungsi, dan secara khusus teknik tersebut sangat berguna ketika dijumpai integran yang melibatkan perkalian fungsi-fungsi aljabar dan transendental. Sebagai contoh, integral parsial akan sangat berfungsi dengan baik untuk menyelesaikan,
Contoh Integral
Integral parsial didasarkan pada rumus turunan dari perkalian dua fungsi.
Turunan Perkalian
di mana u dan v adalah fungsi-fungsi yang terdiferensialkan dalam x. Jika u’ dan v’ kontinu, kita dapat mengintegralkan kedua ruas dari persamaan di atas dan memperoleh
Asal Integral Parsial
Dengan menulis kembali persamaan di atas, diperoleh teorema berikut.
Teorema 1: Integral ParsialJika u dan v adalah fungsi-fungsi dalam x yang kontinu dan terdiferensialkan, maka
Teorema Integral Parsial
Rumus integral parsial ini menyatakan integral aslinya ke dalam bentuk integral yang lain. Berdasarkan pemilihan u dan dv, akan lebih mudah menyelesaikan bentuk integral yang kedua daripada bentuk aslinya. Karena pemilihan u dan dv sangatlah krusial dalam proses integral parsial, berikut ini panduan dalam memilih u dan dv.
contoh soal
Tentukan,
Contoh 1
Pembahasan Untuk menerapkan integral parsial, kita perlu untuk menuliskan integral tersebut ke dalam
Contoh 1 Bentuk Parsial
Terdapat beberapa cara untuk melakukan hal tersebut, yaitu
Contoh 1 Kemungkinan
Panduan dalam pemilihan u dan dv sebelumnya menyarankan kita untuk memilih pilihan pertama karena turunan dari u = x lebih sederhana dari x, dan dv = ex merupakan bagian yang paling rumit dari integran yang sesuai dengan aturan dasar integral.
Contoh 1 u dv
Sekarang, dengan integral parsial akan dihasilkan
Contoh 1 Integrasi
Untuk memeriksa hasil pengintegralan ini, kita dapat menurunkan hasil tersebut untuk mendapatkan integran aslinya.
Catatan Pada contoh 1 di atas kita tidak perlu menuliskan konstanta ketika menyelesaikan
Contoh 1 Keterangan
Untuk mengilustrasikan hal ini, cobalah mengganti v = ex dengan v = ex + C1 kemudian terapkan proses integral parsial untuk melihat bahwa kamu akan mendapatkan hasil yang sama.

Selasa, 23 Juli 2019

Teknik Integral Substitusi Dalam Fungsi Trigonometri

Fungsi trigonometri sebagai integran, untuk beberapa kasus, tidak bisa langsung diintegralkan seperti rumus integral awal. Sehingga perlu juga dilakukan perubahan integran. Perubahan pada fungsi trigonometri dapat dilakukan sesuai dengan persamaan berikut:
  • \sin^2 A+\cos^2A=1
  • \tan^2A+1=\sec^2A
  • \cot^2A+1=\csc^2A
  • \sin A \cos A = \frac{1}{2} \sin 2A
  • \sin^2 A=\frac{1}{2} - \frac{1}{2} \cos 2A
  • \cos^2 A=\frac{1}{2} + \frac{1}{2} \cos 2A
  • \sin A \cos B = \frac{1}{2}[\sin (A+B) + \sin (A-B)]
  • \cos A \sin B = \frac{1}{2}[\sin (A+B) - \sin (A-B)]
  • \cos A \cos B = \frac{1}{2}[\cos (A+B) + \cos (A-B)]
  • \sin A \sin B = -\frac{1}{2}[\cos (A+B) - \cos (A-B)]
Sama hal dengan fungsi aljabar, fungsi trigonometri dapat menggunakan teknik substitusi ini jika integran terdiri dari perkalian sebuah fungsi dengan fungsi turunannya sendiri. Pengoperasian juga sama dengan fungsi aljabar. Sebagai contoh, contoh jika \int 2x \sin (x^2+1)\, dx, untuk mendapat integralnya dengan memisalkan:
x^2+1=U dan \frac{dU}{dx}=2x
sehingga 2x dx = dU.
Berdasarkan permisalan ini, maka persamaan integralnya menjadi:
\int 2x \sin (x^2+1)\, dx=\int \sin U\, dU= - \cos U+C
Jika hasil integral diatas disubstitusi dengan permisalan U, diperoleh:
- \cos U+C=- \cos(x^2+1)+C
Atau jika fungsi yang diturunkan adalah fungsi trigonometrinya langsung, maka sebagai contoh \int \sin x \cos^3x\, dx, mendapat integralnya dengan memisalkan:
\cos x = U dan \frac{dU}{dx} = - \sin x

Integral Substitusi

Teknik Integral Substitusi Dalam Fungsi Aljabar

Pada teknik ini, bentuk fungsi f(x) dapat diubah menjadi bentuk k \cdot (g(x))^n \cdot g^I(x). Perhatikan bahwa jika U = g(x), maka  \frac{dU}{dx}g^I(x) atau dU = g^I(x)\, dx.
Maka, integral ini dapat diselesaikan dengan memisalkan U = g(x) dan U = g^I(x)dxsehingga diperoleh persamaan:
\int f(x)\, dx = k \cdot \int(g(x))^n \cdot g^I(x)dx=k \cdot \int(U)^n \cdot dU
= \frac{k}{n+1}U^{(n+1)}+C
untuk n \neq -1.
Jika saja n = -1, maka:
k \cdot \int(U)^{-1} \cdot dU = \ln U+C.
contoh:
Jika f(x)=(x^4+5)^3 x^3, untuk mendapat integralnya dengan memisalkan:
x^4+5 = U dan \frac{dU}{dx}=4x^3
sehingga x^3 dx=\frac{1}{4} dU.
Berdasarkan permisalan ini, maka persamaan integralnya menjadi:
\int(x^4+5)^3x^3\, dx=\int(U)^3 \cdot \frac{1}{4} dU
=\frac{1}{16}U^4+C
Jika hasil integral diatas disubstitusi dengan permisalan U di peroleh:
\frac{1}{16}U^4+C=\frac{1}{16}(x^4+5)^4+C
Contoh diatas merupakan teknik substitusi pada integral tak tentu. Pada integral tertentu yang memiliki nilai pada interval a \le b \le c tertentu, maka interval tersebut harus disubstitusi ke dalam interval baru untuk variabel U. Sebagai contoh jika \int^2_0 (x^4+5)^3x^3\, dx, untuk mendapat integralnya dengan memisalkan:
x^4+5=U dan \frac{dU}{dx} = 4x^3
Sehingga x^3\, dx=\frac{1}{4}\, dU.
Untuk menciptakan persamaan integral dalam U, maka interval  0\le x\le 2 dirubah menjadi :
  • x=0\to U=x^4+5=0^4=5=5
  • x=2 \to U=x^4+5=2^4+5=21
Berdasarkan permisalan ini, maka persamaan integralnya menjadi:
\int^2_0(x^4+5)^3x^3\, dx=\int^{21}_5 (U)^3 \cdot \frac{1}{4}\, dU
=[\frac{1}{16}U^4]^{21}_5=\frac{1}{16}21^4-\frac{1}{16}5^4
=\frac{1}{16}(194481-625)=12116